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model with p = —2, ¢ = 2. Consider the log-law region in the usual
coordinates, and assume that the turbulence statistics are self-similar
(with Lp ~ vy, k ~ 3°, RE;) ~y ! Rij ~y1). Show that a solution
to Eq. (11.210) is
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Comment on the effects of the three models mentioned above.

11.9 Algebraic Stress and Nonlinear Viscosity Mod-
els

11.9.1 Algebraic Stress Models

By the introduction of an approximation for the transport terms, a Reynolds-
stress model can be reduced to a set of algebraic equations. These equa-
tions form an algebraic stress model (ASM) which implicitly determines the
Reynolds stresses (locally) as functions of k, ¢ and the mean velocity gra-
dients. Because of the approximation involved, algebraic stress models are
inherently less general and less accurate than Reynolds-stress models. But,
because of their relative simplicity, they have been used as turbulence mod-
els (in conjunction with the model equations for k£ and ¢). In addition,
an algebraic stress model provides some insights into the Reynolds-stress
model from which it is derived; and it can also be used to obtain a nonlinear
turbulent viscosity model.
A standard modelled Reynolds-stress transport equation is
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This is a coupled set of six partial differential equations. The terms on
the right-hand side are local, algebraic functions of d(U;)/0x;, (u;u;) and
e—they do not involve derivatives of the Reynolds stresses. In algebraic
stress models, the transport terms D;; (on the left-hand side of Eq. 11.212)
are approzimated by an algebraic expression, so that the entire equation
becomes algebraic. Specifically, Eq. (11.212) becomes a set of six algebraic
equations which implicitly determines the Reynolds stresses as functions of
k, € and the mean velocity gradients.
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In some circumstances (e.g., the log-law region of high-Reynolds num-
ber fully-developed channel flow), the transport terms in Eq. (11.212) are
negligible, so that (in a sense) the Reynolds stresses are in local equilibrium
with the imposed mean velocity gradient. However, the complete neglect of
the transport terms is inconsistent unless P/e is unity, since half the trace
of Eq. (11.212) is

1Dy =P —c. (11.213)

Rodi (1972) introduced the more general weak equilibrium assumption.
The Reynolds stress can be decomposed as
(uiuj)
wo,) = kral
< (3 ]> k
and so spatial and temporal variations in (u;u;) can be considered to be due
to variations in k£ and b;;. In the weak equilibrium assumption, the variations
in (u;u;)/k (or equivalently in b;;) are neglected, but the variations in (u;u;)
due to those in k are retained. For the mean convection term this leads to
the approximation

= k(2b;; + 305, (11.214)
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The same approximation applied to the entire transport term yields
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where the last step follows from Eq. (11.213).
The use of the weak equilibrium assumption (Eq. 11.216) in the modelled
Reynolds-stress equation (Eq. 11.212) leads to the algebraic stress model

(ujuj)

A (P —¢) =Pij + Rij — 3ebi;. (11.217)

This comprises five independent algebraic equations (since the trace contains
no information), which can be used to determine (u;u;)/k (or equivalently
bij) in terms of k, e and 9(U;)/0z;.

As an example of the insights that an ASM can provide, if R;; is given
by the LRR-IP model, then Eq. (11.217) can be manipulated to yield
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(11.218)
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as a function of P/e given by
the LRR-IP algebraic stress model
(Eq. 11.220).
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see Exercise 11.20. Consequently it may be seen that an implication of the
model is that the Reynolds stress anisotropy is directly proportional to the
production anisotropy.

For simple shear flow, Eq. (11.218) is readily solved to obtain the anisotropies
b;; as functions of P/e (see Exercise 11.20): these are plotted in Fig. 11.21.
For large P/e, |bia| tends to the asymptote %02(1 —Cy) = %, whereas
the value given by the k-e model continually increases and becomes non-
realizable.

Again for simple shear flow, if the relation
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is used to define C), then it can be deduced (Exercise 11.31) that the ASM
(Eq. 11.218) yields

(11.219)

%(1 — 02)(01 -1+ CQP/E)

(Cr—1+ P/&)Q '
Consequently, as shown in Fig. 11.20, the value of C), implied by the LRR-IP
model decreases with P /e, corresponding to “shear-thinning” behavior—C,
decreases with increasing shearing, Sk/e.

With respect to the mean flow convection, the weak equilibrium assump-
tion (Eq. 11.215) amounts to

C, = (11.220)
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